Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
PLoS One ; 18(5): e0285539, 2023.
Article in English | MEDLINE | ID: covidwho-2314447

ABSTRACT

Fucosylated chondroitin sulfate (FucCS) is a unique glycosaminoglycan found primarily in sea cucumbers. This marine sulfated glycan is composed of a chondroitin sulfate backbone decorated with fucosyl branches attached to the glucuronic acid. FucCS exhibits potential biological actions including inhibition of blood clotting and severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. These biological effects have been attributed to certain structural features, including molecular weight (MW), and/or those related to fucosylation, such as degrees of fucosyl branches, sulfation patterns and contents. In a previous work, we were able to generate oligosaccharides of the FucCS from Pentacta pygmaea (PpFucCS) with reduced anticoagulant effect but still retaining significant anti-SARS-CoV-2 activity against the delta strain. In this work, we extended our study to the FucCS extracted from the species Holothuria floridana (HfFucCS). The oligosaccharides were prepared by free-radical depolymerization of the HfFucCS via copper-based Fenton reaction. One-dimensional 1H nuclear magnetic resonance spectra were employed in structural analysis. Activated partial thromboplastin time and assays using protease (factors Xa and IIa) and serine protease inhibitors (antithrombin, and heparin cofactor II) in the presence of the sulfated carbohydrates were used to monitor anticoagulation. Anti-SARS-CoV-2 effects were measured using the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 wild-type and delta variant spike (S)-proteins. Furthermore, the cytotoxicity of native HfFucCS and its oligosaccharides was also assessed. Like for PpFucCS, we were able to generate a HfFucCS oligosaccharide fraction devoid of high anticoagulant effect but still retaining considerable anti-SARS-CoV-2 actions against both variants. However, compared to the oligosaccharide fraction derived from PpFucCS, the average MW of the shortest active HfFucCS oligosaccharide fraction was significantly lower. This finding suggests that the specific structural feature in HfFucCS, the branching 3,4-di-sulfated fucoses together with the backbone 4,6-di-sulfated N-acetylgalactosamines, is relevant for the anti-SARS-CoV-2 activity of FucCS molecules.


Subject(s)
COVID-19 , Holothuria , Sea Cucumbers , Animals , Humans , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/chemistry , SARS-CoV-2 , Anticoagulants/pharmacology , Anticoagulants/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry
2.
Proc Natl Acad Sci U S A ; 120(10): e2214561120, 2023 03 07.
Article in English | MEDLINE | ID: covidwho-2273264

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent ß-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Oligosaccharides/pharmacology , Lectins
3.
Int J Biol Macromol ; 231: 123587, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2232256

ABSTRACT

The worldwide outbreak of SARS-CoV-2 has attracted extensive attention to antibacterial and antivirus materials. Cellulose is the most potential candidate for the preparation of green, environmentally friendly antibacterial and antiviral materials. Herein, modified cellulosic fibers with sustained antibacterial and antiviral performance was prepared by introducing chitosan oligosaccharide onto the fibers. The two-step method is proved to be more effective than the one-step method for enhanced chitosan oligosaccharide loadings and antibacterial and antiviral activity. In this instance, the modified fibers with 61.77 mg/g chitosan oligosaccharide loadings can inhibit Staphylococcus aureus and Escherichia coli by 100 % after contacting with bacteria for 12 h and reduce the bacteriophage MS2 by 99.19 % after 1 h of contact. More importantly, the modified fibers have washing durable antibacterial and antiviral activity; the modified fibers have 100 % antibacterial and 98.38 % antiviral activity after 20 washing cycles. Benefiting from the excellent performance of the individual fibers, the paper prepared from the modified fibers show great antibacterial (100 %) and antiviral performance (99.01 %) and comparable mechanical strength. The modified fibers have potential applications in the manufacture of protective clothing and protective hygiene products.


Subject(s)
COVID-19 , Chitosan , Humans , Chitosan/pharmacology , SARS-CoV-2 , Anti-Bacterial Agents/pharmacology , Escherichia coli , Oligosaccharides
4.
Front Cell Infect Microbiol ; 12: 990875, 2022.
Article in English | MEDLINE | ID: covidwho-2065454

ABSTRACT

Cyanovirin-N (CV-N), a lectin from Nostoc ellipsosporum was found an infusion inhibitory protein for human immunodeficiency virus (HIV)-1. A tandem-repeat of the engineered domain-swapped dimer bound specific sites at hemagglutinin (HA), Ebola and HIV spike glycoproteins as well as dimannosylated HA peptide, N-acetyl-D-glucosamine and high-mannose containing oligosaccharides. Among these, CV-N bound the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein at a dissociation constant (KD) of 18.6 µM (and KD=260 µM to RBD), which was low-affinity carbohydrate-binding as compared with the recognition of the other viral spikes. Binding of dimannosylated peptide to homo-dimeric CVN2 and variants of CVN2 that were pairing Glu-Arg residues sterically located close to its high-affinity carbohydrate binding sites, was measured using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Binding affinity increased with polar interactions, when the mutated residues were used to substitute a single, or two disulfide bonds, in CVN2. Site-specific N-linked glycans on spikes were mediating the infection with influenza virus by broadly neutralizing antibodies to HA and lectin binding to HA was further investigated via modes of saturation transfer difference (STD)-NMR. Our findings showed that stoichiometry and the lectin's binding affinity were revealed by an interaction of CVN2 with dimannose units and either the high- or low-affinity binding site. To understand how these binding mechanisms add to viral membrane fusion we compare our tested HA-derived peptides in affinity with SARS-CoV-2 glycoprotein and review lectins and their mechanisms of binding to enveloped viruses for a potential use to simulate neutralization ability.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Acetylglucosamine , Antiviral Agents/pharmacology , Binding Sites , Broadly Neutralizing Antibodies , Carrier Proteins/chemistry , Disulfides , Glycoproteins , Hemagglutinins , Humans , Lectins/genetics , Mannose/chemistry , Oligosaccharides/chemistry , Peptides , Polysaccharides , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Cells ; 11(15)2022 07 30.
Article in English | MEDLINE | ID: covidwho-1993937

ABSTRACT

The consumption of human milk by a breastfeeding infant is associated with positive health outcomes, including lower risk of diarrheal disease, respiratory disease, otitis media, and in later life, less risk of chronic disease. These benefits may be mediated by antibodies, glycoproteins, glycolipids, oligosaccharides, and leukocytes. More recently, human milk extracellular vesicles (hMEVs) have been identified. HMEVs contain functional cargos, i.e., miRNAs and proteins, that may transmit information from the mother to promote infant growth and development. Maternal health conditions can influence hMEV composition. This review summarizes hMEV biogenesis and functional contents, reviews the functional evidence of hMEVs in the maternal-infant health relationship, and discusses challenges and opportunities in hMEV research.


Subject(s)
Extracellular Vesicles , MicroRNAs , Breast Feeding , Female , Humans , Infant , MicroRNAs/metabolism , Milk, Human/metabolism , Oligosaccharides/metabolism
6.
Nutrients ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1911494

ABSTRACT

Background: Five of the most abundant human milk oligosaccharides (HMOs) in human milk are 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL). Methods: A randomized, double-blind, controlled parallel feeding trial evaluated growth in healthy term infants fed a control milk-based formula (CF; n = 129), experimental milk-based formula (EF; n = 130) containing five HMOs (5.75 g/L; 2'-FL, 3-FL, LNT, 3'-SL and 6'-SL) or human milk (HM; n = 104). Results: No significant differences (all p ≥ 0.337, protocol evaluable cohort) were observed among the three groups for weight gain per day from 14 to 119 days (D) of age, irrespective of COVID-19 or combined non-COVID-19 and COVID-19 periods. There were no differences (p ≥ 0.05) among the three groups for gains in weight and length from D14 to D119. Compared to the CF group, the EF group had more stools that were soft, frequent and yellow and were similar to the HM group. Serious and non-serious adverse events were not different among groups, but more CF-fed infants were seen by health care professionals for illness from study entry to D56 (p = 0.044) and D84 (p = 0.028) compared to EF-fed infants. Conclusions: The study demonstrated that the EF containing five HMOs supported normal growth, gastrointestinal (GI) tolerance and safe use in healthy term infants.


Subject(s)
COVID-19 , Infant Formula , Dietary Supplements , Humans , Infant , Milk, Human , Oligosaccharides
7.
J Appl Microbiol ; 133(2): 1089-1098, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1840447

ABSTRACT

AIMS: The discovery of antiviral substances to respond to COVID-19 is a global issue, including the field of drug development based on natural materials. Here, we showed that chitosan-based substances have natural antiviral properties against SARS-CoV-2 in vitro. METHODS AND RESULTS: The molecular weight of chitosan-based substances was measured by the gel permeation chromatography analysis. In MTT assay, the chitosan-based substances have low cytotoxicity to Vero cells. The antiviral effect of these substances was confirmed by quantitative viral RNA targeting the RdRp and E genes and plaque assay. Among the substances tested, low molecular weight chitooligosaccharide decreased the fluorescence intensity of SARS-CoV-2 nucleocapsid protein of the virus-infected cells in a dose-dependent manner. CONCLUSIONS: In conclusion, the chitooligosaccharide, a candidate for natural treatment, has antiviral effects against the SARS-CoV-2 virus in vitro. SIGNIFICANCE AND IMPACT OF STUDY: In this study, it was suggested for the first time that chitosan-based substances such as chitooligosaccharide can have an antiviral effect on SARS-CoV-2 in vitro.


Subject(s)
COVID-19 Drug Treatment , Chitosan , Animals , Antiviral Agents/pharmacology , Chitosan/pharmacology , Chlorocebus aethiops , Molecular Weight , Oligosaccharides , SARS-CoV-2 , Vero Cells
8.
Sci Total Environ ; 836: 155580, 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-1815156

ABSTRACT

The coronavirus pandemic (COVID-19) has created an urgent need to develop effective strategies for prevention and treatment. In this context, therapies against protease Mpro, a conserved viral target, would be essential to contain the spread of the virus and reduce mortality. Using combined techniques of structure modelling, in silico docking and pharmacokinetics prediction, many compounds from algae were tested for their ability to inhibit the SARS-CoV-2 main protease and compared to the recent recognized drug Paxlovid. The screening of 27 algal molecules including 15 oligosaccharides derived from sulfated and non-sulphated polysaccharides, eight pigments and four poly unsaturated fatty acids showed high affinities to interact with the protein active site. Best candidates showing high docking scores in comparison with the reference molecule were sulfated tri-, tetra- and penta-saccharides from Porphyridium sp. exopolysaccharides (SEP). Structural and energetic analyses over 100 ns MD simulation demonstrated high SEP fragments-Mpro complex stability. Pharmacokinetics predictions revealed the prospects of the identified molecules as potential drug candidates.


Subject(s)
COVID-19 , Porphyridium , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Oligosaccharides , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
9.
ACS Infect Dis ; 8(5): 1041-1050, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1788265

ABSTRACT

A panel of O-acetylated N-glycolylneuraminic acid oligosaccharides has been prepared by diversification of common synthetic precursors by regioselective de-O-acetylation by coronaviral hemagglutinin-esterase (HE) combined with C7-to-C9 acetyl ester migration. The resulting compound library was printed on streptavidin-coated glass slides to give a microarray to investigate receptor binding specificities of viral envelope glycoproteins, including spike proteins and HEs from animal and human coronaviruses. It was found that the binding patterns of the viral proteins for N-glycolylated sialosides differ considerable from those of the previously synthesized N-acetylated counterparts. Generally, the spike proteins tolerate N-glycolyl modification, but selectivities differ among viruses targeting different hosts. On the other hand, the lectin domain of the corresponding HEs showed a substantial decrease or loss of binding of N-glycolylated sialosides. MD simulations indicate that glycolyl recognition by HE is mediated by polar residues in a loop region (109-119) that interacts with the 5-N-glycolyl moiety. Collectively, the results indicate that coronaviruses have adjusted their receptor fine specificities to adapt to the sialoglycome of their host species.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Glycoproteins , Neuraminic Acids , Oligosaccharides , Spike Glycoprotein, Coronavirus
10.
Biochimie ; 198: 109-140, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1767919

ABSTRACT

Heparinases are enzymes that selectively cleave heparin and heparan sulfate chains, via cleavage of the glycosidic linkage between hexosamines and uronic acids, producing disaccharide and oligosaccharide products. While heparin is well known as an anti-coagulant drug, heparin and heparan sulfate are also involved in biological processes such as inflammation, cancer and angiogenesis and viral and bacterial infections and are of growing interest for their therapeutic potential. Recently, potential roles of heparin and heparan sulfate in relation to COVID-19 infection have been highlighted. The ability of heparinases to selectively cleave heparin chains has been exploited industrially to produce low molecular weight heparin, which has replaced heparin in several clinical applications. Other applications of heparinases include heparin and heparan sulfate structural analysis, neutralisation of heparin in blood and removal of the inhibitory effect of heparin on various enzymes. Heparinases are known to inhibit neovascularization and heparinase III is of interest for treating cancer and inhibiting tumour cell growth. Heparinase activity, first isolated from Pedobacter heparinus, has since been reported from several other microorganisms. Significant progress has been made in the production, characterisation and improvement of microbial heparinases in response to application demands in terms of heparinase yield and purity, which is likely to extend their usefulness in various applications. This review focuses on recent developments in the identification, characterisation and improvement of microbial heparinases and their established and emerging industrial, clinical and therapeutic applications.


Subject(s)
COVID-19 , Heparin/chemistry , Heparin Lyase/chemistry , Heparitin Sulfate , Humans , Oligosaccharides
11.
J Mol Biol ; 434(2): 167332, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1492301

ABSTRACT

Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Mutation, Missense/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Binding Sites/genetics , COVID-19/virology , Glycosylation , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mannose/metabolism , Mutation, Missense/genetics , Oligosaccharides/metabolism , Polysaccharides/metabolism , Proline/genetics , Proline/immunology , Proline/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
J Gen Virol ; 102(8)2021 08.
Article in English | MEDLINE | ID: covidwho-1368372

ABSTRACT

Infectious bronchitis virus (IBV) is an economically important coronavirus, causing damaging losses to the poultry industry worldwide as the causative agent of infectious bronchitis. The coronavirus spike (S) glycoprotein is a large type I membrane protein protruding from the surface of the virion, which facilitates attachment and entry into host cells. The IBV S protein is cleaved into two subunits, S1 and S2, the latter of which has been identified as a determinant of cellular tropism. Recent studies expressing coronavirus S proteins in mammalian and insect cells have identified a high level of glycosylation on the protein's surface. Here we used IBV propagated in embryonated hens' eggs to explore the glycan profile of viruses derived from infection in cells of the natural host, chickens. We identified multiple glycan types on the surface of the protein and found a strain-specific dependence on complex glycans for recognition of the S2 subunit by a monoclonal antibody in vitro, with no effect on viral replication following the chemical inhibition of complex glycosylation. Virus neutralization by monoclonal or polyclonal antibodies was not affected. Following analysis of predicted glycosylation sites for the S protein of four IBV strains, we confirmed glycosylation at 18 sites by mass spectrometry for the pathogenic laboratory strain M41-CK. Further characterization revealed heterogeneity among the glycans present at six of these sites, indicating a difference in the glycan profile of individual S proteins on the IBV virion. These results demonstrate a non-specific role for complex glycans in IBV replication, with an indication of an involvement in antibody recognition but not neutralisation.


Subject(s)
Coronavirus/physiology , Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Alkaloids/chemistry , Alkaloids/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Cells, Cultured , Chromatography, Liquid , Computational Biology/methods , Coronavirus/drug effects , Coronavirus Infections/veterinary , Gene Expression Regulation, Viral , Glycosylation/drug effects , Infectious bronchitis virus/physiology , Models, Molecular , Molecular Conformation , Molecular Weight , Neutralization Tests , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Polysaccharides/chemistry , Poultry Diseases/virology , Protein Transport , Spectrometry, Mass, Electrospray Ionization , Spike Glycoprotein, Coronavirus/genetics , Structure-Activity Relationship , Virus Replication/drug effects
14.
Int J Biol Macromol ; 163: 1649-1658, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-792418

ABSTRACT

The SARS-CoV-2 spike glycoproteins (SGPs) and human angiotensin converting enzyme 2 (ACE2) are the two key targets for the prevention and treatment of COVID-19. Host cell surface heparan sulfate (HS) is believed to interact with SARS-CoV-2 SGPs to facilitate host cell entry. In the current study, a series of polysaccharides from Saccharina japonica were prepared to investigate the structure-activity relationship on the binding abilities of polysaccharides (oligosaccharides) to pseudotype particles, including SARS-CoV-2 SGPs, and ACE2 using surface plasmon resonance. Sulfated galactofucan (SJ-D-S-H) and glucuronomannan (Gn) displayed strongly inhibited interaction between SARS-CoV-2 SGPs and heparin while showing negligible inhibition of the interaction between SARS-CoV-2 SGPs and ACE2. The IC50 values of SJ-D-S-H and Gn in blocking heparin SGP binding were 27 and 231 nM, respectively. NMR analysis showed that the structure of SJ-D-S-H featured with a backbone of 1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked ß-D-galacto-biose; Gn had a backbone of alternating 1, 4-linked ß-D-GlcAp residues and 1, 2-linked α-D-Manp residues. The sulfated galactofucan and glucuronomannan showed strong binding ability to SARS-CoV-2 SGPs, suggesting that these polysaccharides might be good candidates for preventing and/or treating SARS-CoV-2.


Subject(s)
Coronavirus Infections/virology , Glucuronates/metabolism , Mannose/analogs & derivatives , Pneumonia, Viral/virology , Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/chemistry , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Glucuronates/chemistry , Heparin/chemistry , Heparin/metabolism , Humans , Mannose/chemistry , Mannose/metabolism , Oligosaccharides/chemistry , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phaeophyta/chemistry , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Structure-Activity Relationship
16.
Food Res Int ; 137: 109288, 2020 11.
Article in English | MEDLINE | ID: covidwho-276163

ABSTRACT

Early life is a crucial period for the development of the intestinal microbiota and is related to the body's immunity. Yet research is lacking regarding the effect of stachyose on infants gut microbiomes at this stage and the mechanism is not clear. Therefore, in this experiment, feces samples collected from infants were transplanted into germ-free mice, to explore the effect of stachyose on the intestinal microbiota and host gut barrier. We found that stachyose promoted the relative abundance of A. muciniphila in human feces; enhanced the symbiotic relationships of A. muciniphila; increased the short-chain fatty acid level, and secretory immunoglobulin A level; reduced the levels of lipopolysaccharide, IL-1, IL-17 and TNF-α through downregulated the expression of NF-κB; increased expression of tight junction proteins (occludin and ZO-1) and goblet cell through A. muciniphila. The intake of stachyose is conducive to promoting the proliferation of beneficial bacteria and enhancing the intestinal barrier in germ-free mice. This research provides a theoretical basis for the use of prebiotics to improve intestinal microbiota and barrier in humans.


Subject(s)
Akkermansia , Fecal Microbiota Transplantation , Animals , Humans , Inflammation , Mice , Oligosaccharides , Verrucomicrobia
17.
Science ; 369(6501): 330-333, 2020 07 17.
Article in English | MEDLINE | ID: covidwho-187772

ABSTRACT

The emergence of the betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), represents a considerable threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, which mediates cell entry and membrane fusion. The SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in protein folding and immune evasion. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.


Subject(s)
Betacoronavirus/chemistry , Polysaccharides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites , COVID-19 , Coronavirus Infections , Glycopeptides/chemistry , Glycopeptides/immunology , Glycosylation , Humans , Mass Spectrometry , Models, Molecular , Oligosaccharides/chemistry , Pandemics , Pneumonia, Viral , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL